High Energy Dilepton Experiments

Alberica Toia

Physics Department CERN

Evolution of the Universefrom the Big Bang to today's world

Too hot for quarks to bind!!!
Standard Model (N/P) Physics

Quark-Gluon Plasma

Too hot for nuclei to bind

Nuclear/Particle (N/P) Physics

Hadron Gas

Nucleosynthesis builds nuclei up to He

Nuclear Force...Nuclear Physics

Universe too hot for electrons to bind

E/M <u>Plasm</u>a

E-M...Atomic (Plasma) Physics

Today's Cold Universe

Gravity...Newtonian/General Relativity

The "Little Bang" in the lab

High energy nucleus-nucleus collisions:

- fixed target (SPS: $\sqrt{s}=20GeV$
 - colliders
 - RHIC: √s=200GeV
 - LHC: √s=5.5TeV
- **QGP** formed in a tiny region (10⁻¹⁴m) for very short time (10⁻²³s)
 - Existence of a mixed phase?
 - Later freeze-out
 - **Collision dynamics: different** observables sensitive to different reaction stages

Probing the QGP

Rutherford experiment

- $\alpha \rightarrow atom$
- discovery of nucleus

- SLAC electron scattering
- $e \rightarrow proton$
- discovery of quarks

- Penetrating beams created by parton scattering before QGP is formed
 - High transverse momentum particles → jets
 - Heavy particles → open and hidden charm or bottom
- Probe QGP created in Au+Au collisions
 - Calculable in pQCD
 - Calibrated in control experiments: p+p (QCD vacuum), p(d)+A (cold medium)
- Produced hadrons lose energy by (gluon) radiation in the traversed medium
- QCD Energy loss → medium properties
 - Gluon density
 - Transport coefficient

Electromagnetic Radiation

- Thermal black body radiation
 - Real photons γ
 - Virtual photons γ^* which appear as dileptons e^+e^- or $\mu^+\mu^-$
- No strong final state interaction
 - Leave reaction volume undisturbed and reach detector
- Emitted at all stages of the space time development

Information must be deconvoluted

What we can learn from lepton pair emission

Emission rate of dilepton per volume

$$\frac{dR_{ll}}{d^4q} = -\frac{\alpha^2}{3\pi^3} \frac{L(M)}{M^2} \text{Im} \Pi^{\mu}_{em,\mu}(M,q;T) f^B(q_0,T)$$

$$f^{B}(q_{0},T) = 1/(e^{q_{0}/T} - 1)$$
$$L(M) = \sqrt{1 - \frac{4m_{l}^{2}}{M^{2}}} (1 + \frac{2m_{l}^{2}}{M^{2}})$$

γ*→ee EM correlator Boltzmann factor decay *Medium property temperature*

Medium modification of meson

Chiral restoration

$$\operatorname{Im}\Pi^{\mathrm{vac}}_{\mathrm{em}}(M) = \begin{cases} \nabla \operatorname{ector} \operatorname{Meson} \operatorname{Dominance} & \pi^{+} \\ \sum\limits_{V=\rho,\omega,\phi} \left(\frac{m_{V}^{2}}{g_{V}}\right)^{2} \operatorname{Im}D_{V}(M) & \pi^{-} \\ -\frac{M^{2}}{12\pi} \left(1 + \frac{\alpha_{s}(M)}{\pi} + \ldots\right) N_{c} \sum\limits_{q=u,d,s} (e_{q})^{2} & \P \end{cases}$$

From emission rate of dilepton, one can decode

Thermal radiation from partonic phase (QGP)

- medium effect on the EM correlator
- temperature of the medium

Relation between dilepton and virtual photon

arXiv:0912.0244

Emission rate of dilepton per volume

$$\frac{dR_{ll}}{d^4q} = -\frac{\alpha^2}{3\pi^3} \frac{L(M)}{M^2} \text{Im} \Pi^{\mu}_{em,\mu}(M,q;T) f^B(q_0,T)$$

Emission rate of (virtual) photon per volume

$$q_0 \frac{dR_{\gamma^*}}{d^3 q} = -\frac{\alpha}{2\pi^2} \text{Im} \Pi^{\mu}_{em,\mu}(M,q;T) f^B(q_0,T).$$

Relation between them Prob. $\gamma^* \rightarrow l^+l^-$

$$\boxed{q_0\frac{dR_{ll}}{dM^2d^3q}} = \frac{1}{2}\frac{dR}{d^4q} = \underbrace{\frac{\alpha}{3\pi}\frac{L(M)}{M^2}q_0\frac{dR_{\gamma^*}}{d^3q}}_{\text{virtual photon}} \qquad \qquad \begin{array}{c} \text{This relation holds for the yield after space-time integral} \\ \text{virtual photon} \end{array}$$

This relation holds for

Virtual photon emission rate can be determined from dilepton emission rate

$$q_0 \frac{dn_{\gamma^*}}{d^3 q} \simeq \frac{3\pi}{\alpha} M^2 q_0 \frac{dn_{ll}}{d^3 q dM^2}$$
$$= \frac{3\pi}{2\alpha} M q_0 \frac{dn_{ll}}{d^3 q dM}.$$

 $=\frac{3\pi}{2\alpha}Mq_0\frac{dn_{ll}}{d^3qdM}$. M ×dN_{ee}/dM gives virtual photon yield

For $M \rightarrow 0$, $n_{\gamma}^* \rightarrow n_{\gamma}$ (real) real photon emission rate can also be determined

Alberica Toia

Theory prediction of dilepton emission

Usually the dilepton emission is measured and compared as dN/dp_TdM

The mass spectrum at low p_T is distorted by the virtual photon→ee decay factor 1/M, which causes a steep rise near M=0

qq annihilation contribution is negligible in the low mass region due to the M² factor of the EM correlator

In the caluculation, partonic photon emission process $q+g\rightarrow q+\gamma^*\rightarrow qe^+e^-$ is not included

Virtual photon emission rate

arXiv:0912.0244

When extrapolated to M=0, the real photon emission

 $q+g\rightarrow q+\gamma^*$ is not shown; it should be similar size as HMBT at this p_T

mass (GeV)

0.2

Lecture

0.4

0.6

8.0

The mass of composite systems

atom 10⁻¹⁰ m

 $M \approx \Sigma m_i$ binding energy effect $\approx 10^{-8}$ atomic nucleus 10⁻¹⁴ m

 $M \approx \Sigma \ m_i$ binding energy effect $\approx 10^{-3}$

the role of chiral symmetry breaking

- chiral symmetry = fundamental symmetry of QCD for massless quarks
 - chiral symmetry broken on hadron level

nucleon 10⁻¹⁵ m

M » m_i
mass given by energy
stored in motion of
quarks and by energy in
colour gluon fields

Chirality

- Chirality (from the greek word for hand: "χειρ") when an object differs from its mirror image
- simplification of chirality: helicity (projection of a particle's spin on its momentum direction)
- massive particles P
 - left and right handed components must exist
 - m>0 → particle moves w/ v<c
 - P looks left handed in the laboratory
 - P will look right handed in a rest frame moving faster than P but in the same direction
 - chirality is NOT a conserved quantity
- in a massless word
 - chirality is conserved
 - careful: m=0 is a sufficient but not a necessary condition

QCD and chiral symmetry breaking

• the QCD Lagrangian:

$$\mathcal{L} = -\frac{1}{4} F^{\alpha}_{\mu\nu} F^{\mu\nu}_{\alpha} - \sum_{n} \bar{\psi}_{n} \gamma^{\mu} [\partial_{\mu} - igA^{\alpha}_{\mu} t_{\alpha}] \psi_{n} - \sum_{n} m_{n} \bar{\psi}_{n} \psi_{n}$$
 free gluon field interaction of quarks of with gluon free quarks of mass m_{n}

- explicit chiral symmetry breaking
 - mass term $m_n \psi_n \psi_n$ in the QCD Lagrangian
- chiral limit: $m_u = m_d = m_s = 0$
 - chirality would be conserved
 - → all states have a 'chiral partner' (opposite parity and equal mass)
- real life
 - a₁ (J^P=1+) is chiral partner of ρ (J^P=1-): Δ_m≈500 MeV
 - even worse for the nucleon: N^{*} (½¹) and N (½¹): ∆_m≈600 MeV
 - → (small) current quark masses don't explain this
- chiral symmetry is also spontaneously broken
 - spontaneously = dynamically

Origin of mass

- current quark mass
 - generated by spontaneous symmetry breaking (Higgs mass)
 - contributes ~5% to the visible (our) mass

- constituent quark mass
 - ~95% generated by spontaneous chiral symmetry breaking (QCD mass)

Chiral symmetry restoration

- spontaneous symmetry breaking gives rise to a nonzero 'order parameter'
 - QCD: quark condensate <qq> ≈ -250 MeV³
 - many models (!): hadron mass and quark condensate are linked
- numerical QCD calculations
 - at high temperature and/or high baryon density \rightarrow deconfinement and $\langle qq \rangle \rightarrow 0$
 - approximate chiral symmetry restoration (CSR)
 - > constituent mass approaches current mass
- **Chiral Symmetry Restoration**
 - expect modification of hadron spectral properties (mass m, width Γ) TEMPERATURE
- explicit relation between (m,Γ) and <qq>?
- QCD Lagrangian -> parity doublets are degenerate in mass

300 MeV

|≺q̄q>_{o.}r

CSR and low mass dileptons

- what are the best probes for CSR?
- requirement: carry hadron spectral properties from (T, ρ_B) to detectors
 - relate to hadrons in medium
 - leave medium without final state interaction

dileptons from vector meson decays

	m [MeV]	Γ_{tot} [MeV]	τ [fm/c]	<i>BR→</i> e⁺e⁻
ρ	<i>770</i>	150	1.3	4.7 x 10 ⁻⁵
ω	<i>782</i>	<i>8.6</i>	23	7.2 x 10 ⁻⁵
ϕ	1020	4.4	44	3.0 x 10 ⁻⁴

- best candidate: ρ meson
 - short lived
 - decay (and regeneration) in medium
 - properties of in-medium ρ and of medium itself not well known
- φ meson (m_φ≈2xm_K) → ee/KK branching ratio!

Dilepton Signal

- LMR: m_{ee} < 1.2 GeV/c²
 - LMR I (p_T >> m_{ee})
 quasi-real virtual photon region. Low mass pairs produced by higher order QED correction to the real photon emission
 - LMR II (p_T<1GeV)

 Enhancement of dilepton discovered at SPS (CERES, NA60)

10⁻²

Low Mass Region:

 10^{-3} $m_{ee} < 1.2 \text{ GeV/c}^2$

- •Dalitz decays of pseudo-scalar mesons
- •Direct decays of vector mesons
- •In-medium decay of ρ mesons in the hadronic gas phase

10 Intermediate Mass Region:

 $1.2 < m_{ee} < 2.9 \text{ GeV/c}^2$

- 10⁻⁷ •correlated semi-leptonic decays of charm quark pairs
- 10* •Dileptons from the QGP

High Mass Region:

 m_{ee} > 2.9 GeV/c²

- Dileptons from hard processes
 - -Drell-Yan process
 - -correlated semi-leptonic decays of heavy quark pairs
 - -Charmonia
 - -Upsilons
- →HMR probe the initial stage
- •Little contribution from thermal radiation

Dilepton Signal II

- Dileptons characterized by 2 variables: M, p_T
- M: spectral functions and phase space factors
- p_T: p_T dependence of spectral function (dispersion relation)
 - T dependence of thermal distribution of "mother" hadron/parton
 - M dependent radial flow (β_T) of "mother" hadron/parton

Note I: M Lorentz-invariant, not changed by flow

Note II: final-state lepton pairs themselves only weakly coupled

- dilepton p_T spectra superposition of 'hadron-like' spectra at fixed T
 - early emission: high T, low β_T
 - late emission: low T, high β_T
- final spectra from space-time folding over T- β_T history from $T_i \rightarrow T_{fo}$
- → handle on emission region, i.e. nature of emitting source

HI low-mass dileptons at a glance

time scale of experiments

HI low-mass dileptons at a glance

energy scale of experiments

